The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1 2X  1  1  X  X
 0  X  0 3X+2 2X X+2 2X 3X  0 X+2 2X 3X 2X 3X+2  0  X 2X 3X+2  0 3X  0 X+2 2X  X  0 3X+2 3X+2  0 3X  0 2X  X 2X+2 3X+2  2 3X  2 X+2  2 3X 2X+2 X+2  2 3X+2  2 3X  2 3X 3X+2  2  2 3X X+2 3X 2X+2  2 X+2  2 2X+2  X 2X+2 X+2  X 2X+2 X+2 X+2 2X 2X 2X 2X 2X X+2  X X+2 3X 3X+2 X+2 2X  0  2 2X+2  0 2X+2 2X+2 2X 3X+2 2X+2  X 2X+2 2X 3X+2 3X+2
 0  0 2X+2  0  0 2X+2  2  2  0  0  0  0  2 2X+2 2X+2  2 2X 2X 2X 2X 2X+2  2  2 2X+2 2X  2 2X  2 2X 2X 2X+2 2X+2  0  2  0 2X+2  2  0  2 2X  0  2 2X+2 2X 2X+2  0  0  2 2X+2 2X+2 2X+2 2X+2  0 2X 2X 2X 2X+2 2X 2X  2  2 2X  0  2 2X+2  2 2X  2 2X+2  0 2X  0 2X  2  0  0 2X+2 2X+2  0  0 2X  2 2X+2 2X 2X+2  2 2X+2  2 2X+2 2X  2  2
 0  0  0 2X+2  2 2X+2  2  0 2X  2 2X+2 2X 2X+2  2 2X 2X  0  2  2  0 2X+2  2  0 2X 2X 2X+2 2X+2 2X 2X 2X+2  2  0  0  0  2  2 2X 2X 2X+2 2X+2 2X 2X  0  0 2X+2 2X+2 2X+2  2  0  2 2X 2X+2  0  2  0 2X 2X 2X+2  2 2X+2  0 2X  2  2  2  0 2X+2 2X 2X 2X 2X 2X+2 2X 2X+2  0  2  0 2X+2 2X+2  0 2X  2  0 2X+2  0  0  2  0 2X+2  2 2X  0

generates a code of length 92 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 88.

Homogenous weight enumerator: w(x)=1x^0+193x^88+96x^89+148x^90+288x^91+610x^92+288x^93+136x^94+96x^95+180x^96+4x^98+6x^100+1x^104+1x^176

The gray image is a code over GF(2) with n=736, k=11 and d=352.
This code was found by Heurico 1.16 in 1.78 seconds.